非接触亚微米分辨红外拉曼同步测量系统—mIRage(材料领域)
非接触亚微米分辨红外拉曼同步测量系统—mIRage(材料领域)

非接触亚微米分辨红外拉曼同步测量系统—mIRage(材料领域)

    一款划时代的新型红外光谱系统!


mIRage是美国PSC公司新发布的一款应用广泛的非接触式亚微米分辨红外拉曼同步测量系统。基于PSC的光热诱导共振(PTIR)技术,mIRage显微红外光谱仪突破了传统红外的光学衍射极限,其空间分辨率可达亚微米级,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。

O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。


mIRage克服了传统红外光谱的诸多不足: 


• 空间分辨率受限于红外光光波长,只有10-20 µm

• 透射模式需要复杂的样品准备过程,且只限于薄片样品

• 无传统atr红外模式下的散射像差和接触污染



一分钟视频了解mIRage的特点 





mIRage的优势之处在于: 


• 亚微米空间分辨的IR光谱和成像,且不依赖于IR波长

• 与透射模式相媲美的反射模式下的图谱效果

• 非接触测量模式——使用简单快捷,无交叉污染风险

• 很少或无需样品制备过程 (无需薄片), 可测试厚样品

• 可透射模式下观察液体样品

• 实现同时同地相同分辨率的IR和Raman测试,无荧光风险


O-PTIR--光热红外光谱



IR+Raman--同时、同地、相同分辨率



应用

分析方法和设备的进步为学术研究,工业和政府部门的创新铺平了道路。随着技术的快速发展,人们提出了更多超越这些技术极限的研究问题。mIRage红外显微镜采用光热红外(O-PTIR)光谱技术,同时也是一款亚微米红外+拉曼同步测量显微镜,正逐步被应用去解决这些问题。为满足更多的化学表征要求,mIRage正在众多行业下一代应用和技术发展。

污染物鉴定

原位无损鉴定与失效分析

聚合物

多层膜和相分散

生命科学

活细胞、组织和细菌鉴别

海洋微塑料污染

颗粒与纤维鉴别


污染物鉴定 (微小器件污染物的原位无损鉴定与失效分析)


实现半导体等高科技器件无损伤原位观测,既能大程度还原真实情况,也能大限度为生产过程控制提供基础。然而,无论是器件尺寸、制样过程等,这类样品的鉴别都对传统红外光谱技术提出了巨大的挑战。而利用非接触反射模式的亚微米空间分辨mIRage红外光谱仪,可以轻松解决具挑战性的污染问题。



微小部件的失效分析

左图:图像显示出样品表面所存在的6 µm缺陷的位置。右上;未知物的mIRage光谱测量结果与接近的红外谱库的匹配结果;右下:未知物的同步拉曼光谱与接近的拉曼谱库匹配的比较。


左上: 样品和测量的示意图,左下;可见的摄像头图像缺陷,右图;来自于缺陷位置和完好样品的mIRage谱图比较。不同谱图颜色对应于图像上标记的位置。



亚微米分辨聚苯乙烯珠(含环氧树脂)线扫描结果


左图:通过对嵌入环氧树脂的1 µm直径聚苯乙烯珠切片进行线扫描(以100nm为步长),确定mIRage可实现约400nm的空间分辨率。右图:在两种成分转变的区域,清晰观测到400nm空间分辨率下红外光谱的演变过过程。



薄膜中的缺陷识别

左图:240um厚的双层膜中缺陷的光学图像。随后对图像上标记的位置进行mIRage红外光谱采集。右图:在样品的无缺陷(红色)和缺陷(蓝色)区域中收集的光谱。光谱显示出了全同立构聚丙烯的峰(998 cm-1)。插入图:随着全同立构聚丙烯峰强度的变化,在有缺陷和无缺陷的区域,信号强度的变化规律一致,但缺陷区域表现出更为明显的强度值变化。



聚合物 (多层膜和相分散)


聚合物几乎存在于我们每天与之互动的所有产品中。随着环境意识的增强,聚合物科学正在寻找更新颖,更复杂的解决方案,以改善功能性并减少对环境的影响。这些要求经常超过传统红外显微镜的极限,特别是在空间分辨率方面。具有非接触反射模式技术的独特的亚微米空间分辨率的mIRage显微镜可以满足苛刻的分析和样品表征需求。



Nature Nano:O-PTIR光热红外显微成像技术揭示微塑料颗粒新来源及形成机制


南京大学环境学院季荣教授和苏宇副研究员团队与美国麻省大学邢宝山教授等合作利用世界先进的Photothermal Spectroscopy Corp 公司生产的mIRage O-PTIR显微光谱仪,建立了一种新型的(微)塑料表面亚微米尺度化学变化表征方法。研究团队通过对比分析四个国际主流品牌奶嘴产品在蒸汽消毒前后表面形貌及分子结构的变化,首先证实了蒸汽消毒引起硅橡胶老化具有普遍性。研究发现,硅橡胶婴儿奶嘴的主要成分为聚二甲基硅氧烷(PDMS)及树脂添加剂聚酰胺(PA)(图1b和1c),在经过蒸汽消毒(100 °C)时表面发生降解并释放出微纳塑料颗粒(图1a)。另外借助O-PTIR特有的单一波长大范围成像技术,作者统计了奶嘴消毒过程中PDMS降解产生的1.5 μm以上塑料颗粒数量,并估算出正常奶瓶喂养一年进入婴儿体内的该类微塑料总量约为66万颗,比此前文献报道的儿童从空气、水和食物中摄入的热塑性微塑料数量之和高出一个数量级;假如这些微塑料全部被排入环境,全球平均排放量可能高达5.2万亿个/年。上述结果表明硅橡胶奶嘴消毒产生的颗粒物可能是儿童体内和环境中微纳塑料的重要来源。

图1. 使用水热分解法对硅橡胶试样表面进行蒸汽腐蚀;(a) 实验装置及O-PTIR工作原理示意图; (b)样品蒸煮60 × 10 min表面前后的光学图像; (c) 图(b)中位置1-16的归一化O-PTIR光谱

https://qd-china.com/zh/news/detail/2111291687762



塑料在亚微米尺度下的红外和拉曼同步测量

 

mIRage系统可以在盐晶体混合物中的关键吸收带处,以超高分辨率红外图像来定位PS(0.9 µm,2.0 µm,4.5 µm和10 µm)和PMMA珠(3.0 µm)的存在位置。甚在盐晶体中,以无畸变的红外光谱数据证实了微塑料的组分,并与常规红外光谱数据库中进行匹配。重要的是,与传统的FTIR系统不同,在mIRage反射模式下测量时,无论颗粒形状或大小如何,光谱都是非常一致的,不存在无色散伪像。

 


聚合物(PLA-ACM)相分散

mIRage在数秒内收集到高质量的光谱,数分钟内完成高空间分辨率成像。右图显示了包含249nm大小的ACM红外光谱成像,观察到的明显光谱差异可归因于PLA和ACM化学结构不同。
红外光谱图像:20x20 μm,步长为100 nm,约3分钟完成一张红外光谱图像
(样品由德国 Max Planck Inst Polymer Research的Rudiger Berger博士提供)



聚合物层压板分析

利用尼龙1642 cm-1和1142 cm-1处的关键峰进行红外光谱成像

以100 nm的步长收集图像(每个图像约3分钟)

1.6 μm的EVOH中央层清晰可见!



纳米纤维的直接红外测量

直径为800 nm的PP基纳米纤维的红外光谱测量



生物塑料层压板的红外光谱成像

下图中红色和绿色分别对应不同物质区域

当从纯的PHBHx层移到纯的PLA层时,样品跨过了生物塑料层压板的边界。此时以100 nm步长,8.0 µm总长度进行线性扫描,并分别采集红外光谱数据。

从数据结果可以看到,光谱信号的变化差异远大于光学图像,这表明PLA和PHBHx的混合分布没有任何尖锐的边界。没有清晰的数据点来证明该系统不是简单的二元混合物。PLA和PHBHx在指纹区域重叠并出现了混合。



无需样品制备过程 - 多层膜测量

左图:手动选择带标记的多层包装膜作为样品,用于随后的mIRage光谱测量。右图:光谱清晰而容易的显示出各层组成的差异。



薄膜各层之间的亚微米空间分辨红外谱图

左图:包装食品用的多层膜样品光学成像。右图:相距500 nm的相应mIRage红外光谱数据,具有清晰的光谱区分。



生命科学(活细胞、组织和细菌鉴别)


从植物生物学到医学研究,生命科学是一个不断扩展的研究领域,并在众多行业中产生影响。已经证明,以无标记和客观的方法对生物样品进行亚微米级的空间分辨化学分析,是很难完成的。mIRage显微镜独有的O-PTIR技术,能够以非接触、反射测量模式,有效地解决这一难题。



同位素标记的大肠杆菌单细菌细胞的O-PTIR显微红外谱图和成像

A: O-PTIR图像在1655 cm-1(蛋白质)在200 nm步长。B: 2195 cm-1 (C-D拉伸)200 nm步长O-PTIR图像。两幅图像的采集时间都是3分钟。C:单个大肠杆菌细胞(2.6×1.3微米)1655 cm-1, 50 nm台阶成像。D:从上图(右上)的单个细菌细胞图像中获得了4个亚微米(~500 nm spot) O-PTIR光谱,并有相应的颜色。光谱归一化为1655 cm-1。细胞内的差异是明显的,酰胺I带的位置和形状表明细胞内化学(蛋白质二级结构)的差异被检测到。每个频谱是10个平均值(~15秒),可以看到C-D在219 cm-1和2100 cm-1附近的吸光度。



单一细菌细胞同步亚微米红外+拉曼光谱和成像

 

 A:可见细菌细胞图像。橙色框表示红外成像区域。B: O-PTIR红外图像,1655cm-1,步长50nm。C:同时从单个细菌细胞的指示点上采集亚微米红外和拉曼光谱。



红外偏振O-PTIR研究单个纤丝和肌腱中胶原蛋白的取向

A:从CaF2窗口利用O-PTIR测试控制肌腱原纤维获得的光谱。B:在垂直方向基于1655 cm-1的单波长图像。正方形表示光谱采集位置。比例尺= 1µm
C和D:完整肌腱的光学光热IR(O-PTIR)光谱,〜500 nm测量点。

https://qd-china.com/zh/news/detail/2011131629409



乳腺组织钙化-用O-PTIR显示1微米空间分辨率

A:光学图像。红框为红外图像测量区域。B: 1050 cm-1处的单频图像,以突出钙化部位。C:红外图像彩色圆形标记物的O-PTIR光谱(B)。红外图像区域200 × 200微米在500 nm步长。成像时间约10分钟。



透射模式下溶液中活细胞的亚微米O-PTIR图谱和成像

左:水中上皮细胞的光学照片;

中:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 µm的脂肪包体;

又:原理示意图:红外光谱测量使用透射模式,步长为0.5 µm



IR+Raman血红细胞分析

左:选定的70 x 70 µm区域的光学图像。中:在1583 cm-1处的拉曼成像。右:对选定的红细胞IR+Raman光谱采集(~500 nm的分辨率)。



海洋微塑料污染(颗粒与纤维鉴别)


在海水和其他水系中出现的微塑料污染,愈发受到人们的关注。这种微塑料污染的颗粒大小可以从1 μm到5 mm。当尺寸达到微米或更小时,常规FTIR分析方法在准确识别和形态表征方面面临着巨大的挑战。而利用mIRage在实现原位海洋微塑料测量的同时,以其亚微米分辨率、红外&拉曼同步测量等优势,将IR和Raman光谱充分整合到一个测量中,从而可以更彻底,更准确地表征微塑料污染物。



分散在盐水中的PS和PMMA的红外光谱与成像

mIRage系统可以在盐晶体混合物中的关键吸收带处,以超高分辨率红外图像来定位PS(0.9 µm,2.0 µm,4.5 µm和10 µm)和PMMA珠(3.0 µm)的存在位置。甚在盐晶体中,以无畸变的红外光谱数据证实了微塑料的组分,并与常规红外光谱数据库中进行匹配。重要的是,与传统的FTIR系统不同,在mIRage反射模式下测量时,无论颗粒形状或大小如何,光谱都是非常一致的,不存在无色散伪像。


1、多层薄膜


 

高光谱成像: 1 sec/spectra. 1 scan/spectra
样品区域尺寸:20 µm x 85 µm size. 1 µm spacing. 
图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布

很少或无需样品制备的多层高分子膜的O-PTIR分析


高分子薄膜层间的亚微米空间分辨O-PTIR分析



2、高分子



 

高分子膜缺陷。左:尺寸为240 µm的两层薄层上缺陷的光学图像;

右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰

环氧树脂包埋聚苯乙烯球的亚微米分辨O-PTIR线扫描



PS和PMMA微塑料混合物的亚微米红外拉曼同步O-PTIR

光谱和成像分析




3、生命科学 


 

左:70*70 µm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱



矿物质的红外成像:小鼠骨骼中的蛋白质分布分析

 

上左:水中上皮细胞的光学照片;
上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 µm的脂肪包体;
下:原理示意图:红外光谱测量使用透射模式,步长为0.5 µm

PLA/PHBHx生物塑料薄片的O-PTIR光谱和成像分析

 


4、医药领域

 

 

左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片
中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 µm * 40 µm 

右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 µm *40 µm

 

 

5、法医鉴定

 

 

左:800 nm纤维的光学照片

右:纳米纤维不同区域的O-PTIR图谱

 

6、其他领域

 

•  故障分析和缺陷

•  微电子污染

•  食品加工

•  地质学 

•  考古和文物鉴定


发表文章应用领域
[1] Optical photothermal infrared spectroscopy for nanochemical analysis of   pharmaceutical dry powder aerosols. Khanal, D. et al. International Journal of Pharmaceutics, 2023Pharmaceuticals
[2] Fluorescently Guided Optical Photothermal Infrared Microspectroscopy for Protein-Specific Bioimaging at Subcellular Level. Prater, C et al.Journal of   Medicinal Chemistry, 2023Life Science
[3]SOLARIS national synchrotron radiation centre in Krakow, Poland. Szlachetko, J. et al. The European Physical Journal Plus, 2023Central facility
[4]Innovative Vibrational Spectroscopy Research for Forensic Application. Weberm A. et al. Analytical Chemistry, 2023Forensic
[5]High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Guo, Z. et   al.Analytical Chemistry, 2023Life Science
[6]Prebiotic-Based Nanoamorphous Atorvastatin Attenuates Nonalcoholic Fatty Liver Disease by Retrieving Gut and Liver Health. Cui, J, et al.Small Structures, 2023Life Science
[7]Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Shams, S. et al.Front. Microbiol., 2023Life Science
[8]Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy. Jubb, A. et al.Organic Geochemistry, 2023Paleontology
[9]Concurrent surface enhanced infrared and Raman spectroscopy with single molecule   sensitivity. Anderson, M. et al.Review of Scientific Instrument, 2023Instrumentation/Space exploration
[10]A review on analytical performance of micro- and nanoplastics analysis methods. Thaiba, B.M. et al.Arabian Journal of Chemistry, 2023Microplastics
[11]Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per   Pixel. Xin, J. et al.bioRxiv, 2023Life Science
[12]Microfluidics as a Ray of Hope for Microplastic Pollution. Ece, E. et al.biosensors, 2023Microplastics
[13]Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of   Electrolyte Additives. Sarra, A. et al.Batteries, 2023Batteries
[14]Critical assessment of approach towards estimation of microplastics in environmental   matrices. Raj, D. et al.Land Degradationa and Development, 2023Microplastics
[15]Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a   19th-Century Painting by Corot. Ma, X. et al.Analytical Chemistry, 2022Art and cultural heritage
[16]Development of a Binary Digestion System for Extraction Microplastics in Fish and   Detection Method by Optical Photothermal Infrared. Yan, F. et al.Frontiers in   Marine Science, 2022Microplastics
[17]Automated   analysis of microplastics based on vibrational spectroscopy: are we measuring   the same metrics?. Dong, M. et al.Analytical and Bioanalytical Chemistry,   2022Microplastics
[18]Vitamin   D and Calcium Supplementation Accelerate Vascular Calcification in a Model of   Pseudoxanthoma Elasticum. Bouderlique, E. et al.International Journal of   Molecular Sciences, 2022Pharmaceuticals
[19]Novel   optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive   characterization of heritage glass-metal objects. Marchetti, A. et al.Science   Advance, 2022Art and cultural heritage
[20]Polarization   Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone   Marrow Tissue. Mankar, R. et al.Applied Spectroscopy, 2022Biomedical and life science
[21]Identification   of spectral features differentiating fungal strains in infrared absorption   spectroscopic images. Stancevic, D. et al.Lund Univ, Ugrad Thesis, 2022Bio and environmental
[22]Optical   photothermal infrared spectroscopy can differentiate equine osteoarthritic   plasma extracellular vesicles from healthy controls. Clarke, E. et   al.BioXvid, 2022BioXvid
[23]Correlative imaging to resolve molecular structures in individual cells: substrate   validation study for super-resolution infrared microspectroscopy. Paulus, A.   et al.Nanomedicine: Nanotechnology, Biology, and Medicine, 2022Biomedical and life science
[24]Emerging   nuclear methods for historical painting authentication: AMS-14C dating,   MeV-SIMS and O-PTIR imaging, Global IBA, Differential-PIXE and Full-field   PIXE mapping. Calligaro, T. et al.Forensic Science International, 2022Art and cultural heritage
[25]Strong PP/PTFE microfibril reinforced composites achieved by enhanced crystallization under CO2 environment. Zhang, A. et al.Polymer Testing, 2022Polymer
[26]Leveraging   high-resolution spatial features in mid-infrared spectroscopic imaging to   classify tissue subtypes in ovarian cancer. Gajjela, C. et al.BioarXiv, 2022Biomedical and life science
[27]APPLICATION OF OPTICAL PHOTOTHERMAL INFRARED (O-PTIR) SPECTROSCOPY TO ASSESS BONE   COMPOSITION AT THE SUBMICRON SCALE. Reiner, E. et al.Temple Univ, Master   thesis, 2022Biomedical and life science
[28]Matrix/Mineral   Ratio and Domain Size Variation with Bone Tissue Age: a Photothermal Infrared   Study. Ahn, T. et al.Journal of Structural Biology, 2022Journal of Structural Biology
[29]Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial   infections at the single cell level. Lime, C. et al.Chemical Science, 2022Biomedical and life science
[30]Phase   separation in surfactant-containing amorphous solid dispersions: Orthogonal   analytical methods to probe the effects of surfactants on morphology and   phase composition. Yang, R. et al.International Journal of Pharmaceutics,   2022Pharmaceuticals
[31]Super-Resolved   3D Mapping of Molecular Orientation Using Vibrational Techniques. Koziol, P.   et al.Journal of American Chemical Society, 2022Polymer
[32]Analysis   of the Chemical Distribution of Self-assembled Microdomains with Selective   Localization of Amine-functionalized Graphene Nanoplatelets by Optical   Photothermal Infrared Microspectroscopy. He, S. et al.Analytical Chemistry,   2022Material - graphene
[33]Synovial   joint cavitation initiates with microcavities in interzone and is coupled to   skeletal flexion and elongation in developing mouse embryo limbs. Kim, M. et   al.Biology Open, 2022Biomedical and life science
[34]Infrared Spectroscopy–Quo Vadis?. Hlavatsch, M. et al.applied sciences, 2022infrared spectroscopy, photonics
[35]Steam disinfection enhances bioaccessibility of metallic nanoparticles in   nano-enabled silicone-rubber baby bottle teats, pacifiers, and teethers. Su,   Y. et al.Journal of Environmental Science, 2022Microplastics
[36]NOVEL SPECTROSCOPY TECHNIQUES USED TO INTERROGATE EQUINE OSTEOARTHRITIC   EXTRACELLULAR VESICLES. Clarke, E. et al.Osteoarthritis and Cartilage, 2022Biomedical and life science
[37]Using mid infrared to perform investigations beyond the diffraction limits of   microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy. Bazin, D. et al.Comptes Rendus. Chimie, 2022Biomedical and life science
[38]Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic   plasma extracellular vesicles from healthy controls. Clarke, E. et   al.Analytical Methods, 2022Biomedical and life science
[39]Probing  Individual Particles Generated at the Freshwater–Seawater Interface through   Combined Raman, Photothermal Infrared, and X-ray Spectroscopic Characterization. Mirrielees, J. et al.ACS Meas. Sci. Au, 2022Environmental and Microplastics
[40]Parts-per-Million Detection of Trace Crystal Forms Using AF-PTIR Microscopy. Razumtcev, A. et   al.Analytical Chemistry, 2022Pharmaceuticals
[41]Curious Corrosion Compounds Caused by Contact: A Review of Glass-InducedMetal   Corrosion onMuseum Exhibits (GIMME). Eggert, G. et al.corrosion and materials   degradation, 2022Art and conservation
[42]Comparison of ATR–FTIR and O-PTIR Imaging Techniques for the Characterisation of   Zinc-Type Degradation Products in a Paint Cross-Section. Chua, L. et   al.Molecules, 2022Cultural heritage
[43]Ultrafast Widefield Mid-Infrared Photothermal Heterodyne Imaging. Paiva, E. et   al.Analytical Chemistry, 2022Photonics, bio
[44]Chapter 8 - Raman-integrated optical photothermal infrared microscopy: technology and   applications. Li, X. et al.Molecular and Laser Spectroscopy, 2022Photonics, bio
[45]Chapter 9 - Optical photothermal infrared spectroscopic applications in   microplastics—comparison with Fourier transform infrared and Raman spectroscopy. Krafft, C. et al.Molecular and Laser Spectroscopy, 2022Microplastics
[46]Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Ami, D. et al.Front. Mol. Biosci., 2022Bio and life science review
[47]Novel Submicron Spatial Resolution Infrared Microspectroscopy for Failure Analysis of Semiconductor Components. Zulkifli, S. et al.IPFA 2022 Proceedings, 2022FA/contamination
[48]Overcoming challenging Failure Analysis sample types on a single IR/Raman platform. Anderson, J. et al.ISTFA 2022 Proceedings, 2022FA/contamination
[49]Boosting Electrocatalytic Nitrate-to-Ammonia Conversion via Plasma Enhanced CuCo Alloy–Substrate Interaction. Wu, A. et al.ACS. Sustainable Chem. Eng., 2022Catalysis
[50]Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification. Boeke, J. et   al.Scientific Report, 2022Microplastics
[51]Super-resolution infrared microspectroscopy reveals heterogeneous distribution of photosensitive lipids in human hair medulla. Sandt, C. et al.Talanta, 2022Life science, hair
[52]Functional group Inhomogeneity in Graphene Oxide using Correlative Absorption Spectroscopy. Yoo, J. et al.Applied Surface Science, 2022Material science
[53]Polystyrene:  A Self-Dispersing, Ultralow Loading Additive for Improving the Breakdown Strength of Polypropylene for High Voltage Power Cable Applications. Lee, S.   et al.ACS Applied Polymer Materials, 2022Polymer, material science
[54]Super-Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons (Front   Cover), Advanced Science, 2020.
[55]Self-formed 2D/3D Heterostructure on the Edge of 2D Ruddlesden-Popper Hybrid Perovskites   Responsible for Intriguing Optoelectronic Properties and Higher Cell
[56]Efficiency,  Applied Physics, 2020.
[57]Two-Dimensional Correlation Analysis of Highly Spatially Resolved Simultaneous IR and Raman   Spectral Imaging of Bioplastics Composite Using Optical Photothermal Infrared   and Raman Spectroscopy, The Journal of Molecular Structure, 2020.
[58]Super resolution correlative far-field submicron simultaneous IR and Raman   microscopy: a new paradigm in vibrational spectroscopy, Advanced Chemical Microscopy for Life Science and Translational Medicine, 2020.
[59]Submicron-resolution polymer orientation mapping by optical photothermal infrared spectroscopy,  International Journal of Polymer Analysis and Characterization, 2020.
[60]Bulk to nanometre-scale infrared spectroscopy of pharmaceutical dry powder aerosols, Analytical Chemistry, 2020.
[61]Optical   Photothermal Infrared Micro-Spectroscopy – A New Non-Contact Failure Analysis Technique for Identification of<10mm Organic Contamination in the Hard   drive and other Electronics Industries. Microscopy Today, 2020.
[62]Spontaneous Formation of 2D-3D Heterostructures on the edges of 2D RuddlesdenPopper   Hybrid Perovskite Crystals, Chemistry of Materials, 2020.
[63]Simultaneous Optical Photothermal Infrared (OPTIR) and Raman Spectroscopy of Submicrometer   Atmospheric Particles, Analytical Chemistry, 2020.
[64]Detection of high explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy, Analytical Chemistry, 2020.
[65]Polarized O-PTIR of collagen and individual fibril strands reveals orientation,  Molecules Special Edition: “Biomedical Raman and Infrared Spectroscopy:   Recent Advancement and Applications, 2020.
[66]Evolution of a Radical-Triggered Polymerizing High Internal Phase Emulsion into an   Open-Cellular Monolith, Macromolecular Chemistry and Physics, 2019.
[67]A Global Perspective on Microplastics, Journal of Geophysical Research: Ocean,   2019.
[68]Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics,   Biomedical Engineering. 2019
[69]Advances in Infrared Microspectroscopy and Mapping Molecular Chemical Composition at  Submicrometer Spatial Resolution, Spectroscopy 2018.
[70]Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution, Ji-Xin Cheng et al., Anal. Chem. 2017, 89,  4863-4867.
[71]Depth-resolved mid-infrared photothermal imaging of living cells and organisms with   submicrometer spatial resolution, Ji-Xin Cheng et al., Sci. Adv. 2016, 2, e1600521.



科学研究


undefined


生物医学应用




部分用户评价:




BTV专访:非接触式亚微米分辨红外拉曼同步测量新技术如何解决微塑料监测难题


mIRage Demo演示-Microplastics


Webinar 视频:


视频回放丨《全新亚微米红外拉曼同步测量系统在生命科学领域的前沿应用》https://qd-china.com/zh/jsonline/detail/2111121786317

视频回放丨《现场演示——以0.5um分辨率,同步测量单细胞、聚合物和微塑料的红外与拉曼(IR+Raman)光谱》https://qd-china.com/zh/jsonline/detail/2107121189461

视频回放丨《全新亚微米红外光谱及成像技术在生物、微塑料、高分子以及失效分析的前沿应用》https://qd-china.com/zh/jsonline/detail/2105271616091

视频回放丨《亚细胞分辨的同步红外+拉曼(O-PTIR)成像 在生物医学上的应用》https://qd-china.com/zh/jsonline/detail/2105261799921

视频回放丨《单细胞和细胞内细菌红外光谱:   O-PTIR光热红外技术在生命科学中的应用,从组织到活细胞和单细胞细菌》https://qd-china.com/zh/jsonline/detail/2104281190055   

视频回放丨《亚微米尺度红外+拉曼光谱的单个活细胞分析——光热红外在生命科学领域的应用》 https://qd-china.com/zh/jsonline/detail/2104261455647  

视频回放 |《亚微米尺度下的胶原蛋白分析及其在单细胞、细菌层面的生物学应用》 https://qd-china.com/zh/jsonline/detail/2101191781473

视频回放 |《开创性非接触式红外光谱测量新技术---深度探索生命科学微观世界》 https://qd-china.com/zh/jsonline/detail/2007311020116

视频回放 |《亚微米红外拉曼同步光谱测量技术用于颗粒物分析——微塑料,纤维和大气气溶胶》  https://qd-china.com/zh/jsonline/detail/2007201097890

视频回放 |《mIRage亚微米红外+拉曼同步显微光谱——化学成像和振动光谱新标准》 https://qd-china.com/zh/jsonline/detail/2006281082909

视频回放 |《一种不怕“水”的生物无标记红外光谱显微成像新技术》 https://qd-china.com/zh/jsonline/detail/2006181740941

视频回放 |《新技术鉴别高分子/半导体领域里的“渣物质”—非接触式亚微米分辨红外拉曼同步测量》 https://qd-china.com/zh/jsonline/detail/2006110949034

视频回放 |《微塑料追踪鉴定新技术——非接触式亚微米分辨红外拉曼同步测量系统》 https://qd-china.com/zh/jsonline/detail/2006041118659

视频回放 |《红外光谱技术在空间分辨、时间分辨和测量模式上的新突破》 https://qd-china.com/zh/jsonline/detail/2004171891727


相关新闻